joshichaudhary
joshichaudhary
02-02-2017
Mathematics
contestada
limit tends to 0 1-cos4x/1-cos6x
Respuesta :
LammettHash
LammettHash
02-02-2017
[tex]\displaystyle\lim_{x\to0}\frac{1-\cos4x}{1-\cos6x}=\lim_{x\to0}\frac{1-\cos4x}{1-\cos6x}\times\frac{1+\cos4x}{1+\cos4x}\times\frac{1+\cos6x}{1+\cos6x}[/tex]
[tex]=\displaystyle\lim_{x\to0}\frac{1-\cos^24x}{1-\cos^26x}\times\frac{1+\cos6x}{1+\cos4x}[/tex]
[tex]=\displaystyle\lim_{x\to0}\frac{\sin^24x}{\sin^26x}\times\frac{1+\cos6x}{1+\cos4x}[/tex]
[tex]=\displaystyle\lim_{x\to0}\frac{\sin^24x}{\sin^26x}\times\frac{(4x)^2}{(4x)^2}\times\frac{(6x)^2}{(6x)^2}\times\frac{1+\cos6x}{1+\cos4x}[/tex]
[tex]=\displaystyle\lim_{x\to0}\left(\frac{\sin4x}{4x}\right)^2\left(\frac{6x}{\sin6x}\right)^2\left(\frac{4x}{6x}\right)^2\frac{1+\cos6x}{1+\cos4x}[/tex]
[tex]=\displaystyle\left(\lim_{x\to0}\frac{\sin4x}{4x}\right)^2\left(\lim_{x\to0}\frac{6x}{\sin6x}\right)^2\left(\lim_{x\to0}\frac{4x}{6x}\right)^2\lim_{x\to0}\frac{1+\cos6x}{1+\cos4x}[/tex]
Recall that [tex]\displaystyle\lim_{x\to0}\frac{\sin ax}{ax}=\lim_{x\to0}\frac{ax}{\sin ax}=1[/tex]. You then have
[tex]\displaystyle\left(\lim_{x\to0}\frac{4x}{6x}\right)^2\lim_{x\to0}\frac{1+\cos6x}{1+\cos4x}[/tex]
[tex]=\displaystyle\left(\lim_{x\to0}\frac23\right)^2\lim_{x\to0}\frac{1+\cos6x}{1+\cos4x}[/tex]
[tex]=\displaystyle\frac49\times\frac{1+1}{1+1}[/tex]
[tex]=\displaystyle\frac49[/tex]
Answer Link
VER TODAS LAS RESPUESTAS ( 54+ )
Otras preguntas
PLEASE PLEASE HELP WILL MARK BRAINLIEST !!!!
A)32 ft B) 60 Ft C) 72ft D) 96ft
Which expression is equivalent to 2*3 / 2^6 A 2^2 B 1/2^2 C 2^8 D 1/2^8
anyone going to be my friend
which are not the length of sides of a right
Find the slope of the line. Write your answer in simplest form.
Lanna's dad was teaching her about the stock market. He has 100 shares of Company A stock valued at $45 a share and 250 shares of Company B stock valued at $22
The coordinate point E(8,-10) after a dilation with scale factor of 2.5, centered at the origin, becomes the point O (20,-25) O (16, -20) O (10.5, -7.5) O (5.5,
Hey y'all I hope you have a wonderful day.Free Points!!!!!!!!!!Can I get a Big 58th Happy Birthday to my Grandma.
socrates answered questions a with a simple yes or no b by questioning the questioner c with lengthy speeches about his opinions d by referring people to the l